Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulfate.

نویسندگان

  • M Taraktchoglou
  • A A Pacey
  • J E Turnbull
  • A Eley
چکیده

The ability of heparan sulfate, heparin, and other glycosaminoglycans to inhibit the infectivity of Chlamydia trachomatis serovars E and LGV was examined using a simple competitive inhibition assay with three cell types from the human female reproductive tract, including primary human endosalpingeal cells. With the majority of the glycosaminoglycans tested, LGV was more significantly inhibited than serovar E. We have compared chlamydial infectivity between a wild-type Chinese hamster ovary cell line and two glycosaminoglycan-deficient cell lines. LGV was shown to be unable to infect heparan sulfate-deficient and GAG-deficient Chinese hamster ovary cell lines, whereas the E serovar infected these cells as efficiently as the control (nondeficient) cells. These two sets of experiments confirmed that serovar LGV is more dependent on a heparan sulfate-related mechanism of infectivity than is serovar E. This is further supported by the fact that attempts to purify a heparan sulfate-like molecule from either serovar cultured in glycosaminoglycan-deficient cell lines were nonproductive. Previous reports have suggested that chlamydia are able to produce a heparan sulfate-like molecule that is important for attachment and infectivity. We have attempted to detect possible binding of a specific heparan sulfate antibody to C. trachomatis by flow cytometry. Results showed no binding of the heparan sulfate antibody to C. trachomatis serovar LGV or E. Our results strongly indicate that chlamydiae do not produce a heparan sulfate-like molecule but rather use host cell heparan sulfate in order to infect cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chlorate: a reversible inhibitor of proteoglycan sulphation in Chlamydia trachomatis-infected cells.

Sulphated glycosaminoglycans, such as heparan sulphate, have been shown to be essential for the infectivity of many organisms. The aims of this study were to verify the role of sulphated glycosaminoglycans in chlamydial infection and to investigate whether they are present on chlamydia or chlamydial host cells. The effect of undersulphation of host cells and chlamydial elementary bodies was exa...

متن کامل

Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process.

Host factors involved in Chlamydia trachomatis pathogenesis were investigated by random chemical mutagenesis of Chinese hamster ovary (CHO-K1) cells followed by selection for clones resistant to chlamydial infection. A clonal mutant cell line, D4.1-3, refractory to infection by the C. trachomatis L2 serovar was isolated. The D4.1-3 cell line appears to be lacking in a previously undescribed tem...

متن کامل

Interaction of Chlamydia trachomatis with mammalian cells is independent of host cell surface heparan sulfate glycosaminoglycans.

The hypothesis that host cell surface heparan sulfate is required to promote chlamydial infection was tested using a cell line (CHO-18.4) containing a single retroviral insertion and the concomitant loss of heparan sulfate biosynthesis. Tests of chlamydial infectivity of heparan sulfate-deficient CHO-18.4 cells and parental cells, CHO-22, demonstrated that both were equally sensitive to infecti...

متن کامل

Coincubation of human spermatozoa with Chlamydia trachomatis in vitro causes increased tyrosine phosphorylation of sperm proteins.

Elementary bodies (EBs) of the obligate intracellular bacterium Chlamydia trachomatis are responsible for the first step of attachment to host cells. We have studied the effects of EBs on human sperm protein tyrosine phosphorylation, which is important to sperm function. Indirect immunofluorescence using antiphosphotyrosine antibodies showed that serovar E, but not LGV, caused increased tyrosin...

متن کامل

The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding

Chlamydia pneumoniae, an obligate intracellular human pathogen, causes a number of respiratory diseases. We explored the role of the conserved OmcB protein in C. pneumoniae infections, using yeast display technology. (i) Yeast cells presenting OmcB were found to adhere to human epithelial cells. (ii) Pre-incubation of OmcB yeast cells with heparin, but not other glycosaminoglycans (GAGs), abrog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 69 2  شماره 

صفحات  -

تاریخ انتشار 2001